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a b s t r a c t

Fuzzy formal concept analysis (FFCA) is generally used to describe the processes of concept-cognitive
learning (CCL). However, for fuzzy formal contexts, each attribute has the same weight (i.e, the same
degree of importance) before constructing fuzzy concepts, which limits mining interesting knowledge
and affects its application promotion. On the other hand, this model is hard to resist the influence of
noise hidden in data, which results in poor classification learning. Moreover, the existing incremental
CCL algorithms still face some challenges that the previously acquired knowledge is not fully utilized to
improve the classification accuracies for dynamic data. To address these issues, we introduce different
weights into fuzzy formal contexts and propose a novel incremental CCL mechanism in dynamic
environment. Firstly, weight values of attributes from different decisions based on fuzzy entropy
are established to measure the significant degree of attributes. Then, to comprehensively explicate
the hierarchical relationships of fuzzy concepts, we construct the weighted fuzzy concept lattice and
the weighted fuzzy concept space. Secondly, we design an algorithm to update the weighted fuzzy
concepts for facilitating concept classification. To overcome the individual cognitive limitation, we put
forward the progressive weighted fuzzy concept to remove repeated information. Furthermore, the
classification prediction label and dynamic updating mechanism after adding objects are systematically
discussed. Finally, we perform an experimental evaluation on ten data sets which explicate the
feasibility and efficiency of our proposed approach.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Cognitive computing is treated as an emerging computer sys-
em paradigm on the human brain by attempting to solve uncer-
ain, imprecise and incomplete problems in biological system [1].
s is well known, it is the process of thinking, learning and
erceiving by simulating the human brain using a computer. With
ears of development, cognitive learning, as a useful mathemat-
cal tool to realize cognitive computing, has been universally
pplied in cognitive psychology [2–5], machine learning [6–9],
nformation science [10–12], and classification performance [13,
4].
Formal concept analysis (FCA) [15,16], proposed by Wille in

980s, is a data analysis tool for discovering the uncertain knowl-
dge. Actually, concept, as the central notion of human thinking,
s the basic reflection of the concrete characteristics of objective
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reality. Commonly, formal context, a fundamental foundation of
FCA, contains numerical values 1 and 0, whereas crisp relation
between objects and attributes is endued merely. A classical con-
cept can be categorized into two components: extent and intent
among which they can be determined with each other. Since
then, in some practical applications, with the increase of data
types, various concepts from different relationships have been
investigated, such as fuzzy concept [17], three-way concept [18],
multi-scale concept [19], weighted concept [20–22]. Generally
speaking, by weighted concepts, one can choose useful informa-
tion according to their preferences and requirements. Information
entropy, introduced by Shannon [23], as an uncertainty measure,
improves the ability to resolve information into granules, which
has been successfully extended to fuzzy entropy [24,25], non
probabilistic entropy [26], and hybrid entropy [27]. Some of its
expansions have been generally used to measure the fuzziness of
rough set and FCA, which facilitate data classification. Concretely,
Zhang et al. [21] developed a method to obtain weighted concepts
based on information entropy in the absence of prior knowledge.
In order to reduce the size of concepts, Singh et al. [28] explored
the correlation between weights assigned to attributes before
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omputing fuzzy concepts. Although these methods have indi-
ated the importance of selected knowledge, that is, the weights
f attributes are different during constructing concepts, they do
ot mine the weights of conditional attributes from the consis-
ency of decision information granules. In other words, motivated
y this problem, we find that fuzzy entropy provides a viable
pproach for the research of FFCA, and our work will discuss the
hortage of the correlation description by utilizing conditional
ttributes and decision attributes.
With the high-speed development and rapid alteration of in-

ormation technology, the available data has grown explosively.
s an effective method to collect concepts from big data or
nformation, CCL can reveal the cognitive process of a human
rain. Incremental learning can directly deal with the acquired
ontinuous data and extract valuable information, which can pre-
erve previous knowledge rather than computing from scratch so
s to increase computational efficiency. For instance, for improv-
ng efficiency greatly, Kumar [29] proposed the concept learning
ramework to analyze functionalities of bidirectional associative
emory. Li et al. [30] investigated concept learning mechanism
y granular computing from philosophy and cognitive psychol-
gy. Considering that retraining from a high-dimensional data is
omputationally expensive in the worst case, scholars introduced
ncremental learning systems [5,6,31,32]. To achieve uncertain
lassification task, Shi et al. [6,7] first discussed a novel CCL
odel that all samples are mapped to different subspaces, which

s accompanied by dynamic concept learning under incremental
ognitive process. Subsequently, Yan et al. [32] implemented
n incremental CCL algorithm to concept extraction based on a
hree-way object partial order structure diagram when handling
ynamic data. Inspired by Li’s work [30], Zhao et al. [33] put
orward cognitive concept learning in a sense of incomplete in-
ormation. Additionally, to address fuzzy conceptual clustering
nalysis and state-of-the-art classification ability, Mi et al. [9]
tudied a fuzzy-based concept learning mechanism. Combining
ositive information and negative information, Yuan et al. [13]
eveloped an incremental learning mechanism for implementing
bject classification in progressive fuzzy three-way concept. As
matter of fact, except for these fuzzy concepts, there are still
ther types of concepts, such as weighted concept. Therefore,
ow to identify the classification rule in weighted concepts is
till a problem that worths exploring. And we will propose the
olution in Section 3.
The fuzzy formal context considers only the same degree of

mportance with respect to attributes, while overlooking the dif-
erences. For the sake of solving this limitation, we in this article
xplore a novel approach to calculate the weight of fuzzy concept
n a given fuzzy formal context. Furthermore, it should be noted
hat concept classification could be beneficial for comprehending
nd representing concept learning processes. Based on the above
iscussion, we construct a progressive weighted fuzzy concept
pace for removing the repeated concept information. In so doing,
e achieve the concept classification by similarity measurement.
ubsequently, to fully collect more valuable information about
ewly added objects, we propose a dynamic updating mechanism
ith respect to further concept learning. The flow chart of the
roposed approach is shown in Fig. 1.
The remaining of this paper is organized as follows. We intro-

uce some corresponding notions about FFCA and entropy, and
otivation in Section 2. Section 3 studies the cognitive learning
rocess of weighted fuzzy concept space. In addition, Section 4
iscusses how to classify the class label of the new objects and
ow to update the weighted fuzzy concept space dynamically.
hen the dynamic updating mechanism algorithm based on the
rogressive weighted fuzzy concept (for short DMPWFC) is ana-
yzed in Section 4. Section 5 conducts numerical experiments and
valuates the effectiveness of our algorithm. Final summary and
urther research are drawn in Section 6.
2

Table 1
A fuzzy formal decision context.
G a1 a2 a3 d

x1 0.3 0.5 0.7 1
x2 0.7 0.5 0.6 2
x3 0.2 0.8 0.9 1
x4 0.9 0.6 0.8 2

2. Preliminaries

In this section, we briefly review some basic notions about
FFCA and entropy theory. More specific information is available
in [17,23–26].

2.1. FFCA

In FFCA, formal fuzzy context, introduced by S. Yahia [17], is
a mathematical tool of data analysis and knowledge representa-
tion. Practically, it includes nonempty finite sets of objects and
attributes, and a fuzzy binary relation between the two sets that
are needed in the later discussion.

Assume U is a universe, and a fuzzy set, or more precisely
a fuzzy set Ã of U which is defined as a membership function
Ã(·) : U → [0, 1]. For an arbitrary x ∈ U , the value Ã(x) is said to
e the fuzzy membership degree of x to Ã. Then we denote the

set of all fuzzy subsets of U as F(U).
Let A and B be two fuzzy sets on U . If Ã(x) ≤ B̃(x), x ∈ U , then

A is a subset of B, i.e., A ⊆ B. Especially, we denote by P(U) the
et of crisp sets on U .
A triplet (G,M, R̃) is called a fuzzy formal context, where G =

x1, x2, . . . , xn} andM = {a1, a2, . . . , am} are all the sets of objects
nd attributes, respectively. R̃ is a fuzzy relation between G and M
i.e. R̃ : G×M → [0, 1]), and each R̃(x, a) reflects the membership
egree of object x to attribute a.

efinition 1 ([17]). Let (G,M, R̃) be a fuzzy formal context. For
⊆ G and B̃ ∈ F(M), two operators F : P(G) → F(M) and
: F(M)→ P(G) are given as follows:

(X)(a) =
⋀
x∈X

R̃(x, a), a ∈ M, (1)

Q (B̃) =
{
x ∈ G : ∀a ∈ M, B̃(a) ≤ R̃(x, a)

}
, (2)

where a pair (X, B̃) is fuzzy concept satisfying F (X) = B̃ and
(B̃) = X . In general, X and B̃ are called extent and intent,
espectively.

Let (G,M, R̃) and (G,D, J) be two fuzzy formal contexts, R̃ :
× M → [0, 1] and J : G × D → {0, 1}. Then a fuzzy formal

decision context is called (G,M, R̃,D, J) where M ∩ D = ∅, in
which M is represented as the conditional attribute set and D is
the decision attribute set.

Example 1. A fuzzy formal decision context (G,M, R̃,D, J) is
depicted in Table 1, where G and M are a set of students and
a set of courses, respectively. a1, a2, a3 represent the English,
Mathematics, and Physical, respectively. R̃(x1, a2) means the fuzzy
membership value of the score of student x1 in the percentile
system of Mathematics(a2) examination. Then {d} is the decision
attribute set that can divide G into two decision classes D1 =

{x1, x3} and D2 = {x2, x4}. The generated fuzzy concepts are
revealed in Table 2. Remarkably, for convenience, we clearly
abbreviate

(
{x , x , x }, (a0.3, a0.2, a0.3)

)
as

(
124, (0.3, 0.2, 0.3)

)
.
1 2 4 1 2 3
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Fig. 1. The overall procedure of the proposed method.
Table 2
Fuzzy concepts of Table 1.
Fuzzy concepts Nomenclature(
U, (0.2, 0.5, 0.6)

)
C1(

124, (0.3, 0.5, 0.6)
)

C2(
134, (0.2, 0.5, 0.7)

)
C3(

14, (0.3, 0.5, 0.7)
)

C4(
24, (0.7, 0.5, 0.6)

)
C5(

34, (0.2, 0.6, 0.8)
)

C6(
4, (0.9, 0.6, 0.8)

)
C7(

3, (0.2, 0.8, 0.9)
)

C8(
∅, (1, 1, 1)

)
C9

2.2. Entropy

Entropy is a measure of the uncertainty of a random experi-
ent S. In other words, it is also a measure of the information ob-

tained when observing results. Next, we first propose Shannon’s
entropy [23] based on the probability information. Eventually, a
fuzzy entropy measure is also introduced which is an important
extension of Shannon’s theory.

Let S = {s1, s2, . . . , st} be a finite discrete random variable set.
If the probability distribution of si is p(si), then the information
generated by si is denoted as:

I(si) = −log2p(si).

Then the Shannon’s entropy H(S) of a discrete random variable S
is given as:

H(S) = −
t∑

i=1

p(si)log2p(si). (3)

As shown above, entropy is considered to be a probability distri-
bution function of S.

Furthermore, in 1972, inspired by Shannon’s entropy theory,
De Luca [26] proposed a new parameterized fuzzy entropy to
measure the fuzziness uncertainty of a random variable. Given
a set-to-point mapping H : F(2S) → ℜ+, the measure of fuzzy
entropy is expressed as:

H(A) = −k
t∑

i=1

(
Ã(si)log

(
Ã(si)

)
+

(
1− Ã(si)

)
log

(
1− Ã(si)

))
. (4)

where k > 0 is an undetermined constant and Ã(si) is the fuzzy
value with respect to si. Meanwhile, this fuzzy entropy estimates
the global deviations from ordinary sets. That is, any non-fuzzy
set A indicates H(A) = 0, and a fuzzy set A with Ã(si) = 0.5 for
each i = 1, 2, . . . , t represents the role of maximum element of
ordering defined by H .

Actually, different from the Shannon’s entropy, the fuzzy en-
tropy does not depend on probability of variable si, but depends
on its membership degree.
3

2.3. Motivation

In fuzzy formal contexts, each attribute has the same weight
in premise of constructing the fuzzy concept lattice. That is to
say, the intents of fuzzy concepts are considered to have the
same degree of importance, and all the nodes would be generated.
However, in practical situations, human are not interested in
all the original fuzzy concepts. On the contrary, they prefer to
select the interesting learning process according to their pref-
erences for some attributes. For instance, the total score of the
final evaluation of undergraduate students in universities is 100
points, which is generally divided into three parts in the ratio of
3:3:4 to calculate their final scores. The Covid 2019 has caused
a pandemic in more than 200 nations, thereby affecting billions
of people. It is important to consider that the confirmed symp-
toms of patients frequently have a fever, pulmonary infection,
cough, headache, muscle aches and so forth. Nevertheless, at first,
doctors attach more importance to fever, pulmonary infection,
and cough symptoms to some extent. Analogously, the evaluation
indicators, used in the scholarship evaluation of postgraduates,
include professional scores, scientific research achievements, per-
sonal moralities, and academic activities, etc. What we do know,
however, is that scientific research achievements can largely de-
termine whether a postgraduate could receive a scholarship or
not. The reason is that the proportion of this indicator is higher
than that of the others. To sum up, it should be noted that the
above weight values are discussed according to the subjective
experience of experts combined with different events, while ig-
noring the objective evidences. Consequently, it is necessary to
assign different weights to different attributes to capture the
degree of importance in a fuzzy formal decision context, which
is consistent with human cognition.

In reality, from the above discussion, it should be pointed
out that cognitive learning considers conceptual uncertainty ac-
cording to the different degree of importance, which can better
reflect the actual cognitive situation. For instance, by considering
Example 1, the following Fig. 2 describes the fuzzy concept lattice
where each dark pink node is a fuzzy concept. And what is
particularly worth mentioning is that three light green nodes
mean two students x3, x4 whose the scores of Mathematics(a2)
and Physical(a3) are both more than 60 percent, and only students
x3, x4 have all achieved more than 60 percent with respect to
the scores of Mathematics(a2) and Physical(a3). Now, what we
are concerned about is how to collect these three fuzzy concepts
(three light green nodes). Additionally, assume that each fuzzy
concept has its own weight, then it is convenient to select the
interesting fuzzy concept information according to the weighted
values.

In the process of cognitive learning, the intents formed by cer-
tain weighted attributes imply the uncertain knowledge reason-
ing. The results of cognitive learning of weighted attributes are
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Fig. 2. Fuzzy concept lattice.

ifferent from those of traditional cognitive learning
13,30,31]. To resolve the aforementioned issues, we introduce
n approach to calculate the weights of attributes which quan-
ifies the influence of different importance. It is evident that a
eighting scheme can be distinguished from the global viewpoint
f the individual classes not from the entire data and thereby
mplements sample classification. Thus, weighted fuzzy concept
attice is proposed to explicate the above-mentioned challenges.

. The cognitive learning process of weighted fuzzy concept
pace

In this section, we propose the cognitive learning approach to
eighted fuzzy concept for meeting actual cognition.

.1. The weighted fuzzy concept

Given a fuzzy formal decision context (G,M, R̃,D, J), where
G = {x1, x2, . . . , xn} and M = {a1, a2, . . . , am} are the sets of
objects and attributes, respectively. D = {d1, d2, . . . , dr} is the
set of decision attributes to mark the object classification. And
G/D = {D1,D2, . . . ,Dt} is seen as a decision partition on G to D.

efinition 2. Let (G,M, R̃,D, J) be a fuzzy formal decision con-
text. For x ∈ G and a ∈ M , R̃(x, a) denotes the fuzzy membership
value of object x to attribute a. Then the positive match degree of
a provided by Di is defined as follows:

Ei =

∑
x∈Di

R̃(x, a)∑
x∈G R̃(x, a)

, (5)

and the negative match degree of a of Di is constructed as:

Ni =

∑
x∈Di

(
1− R̃(x, a)

)∑
x∈G

(
1− R̃(x, a)

) , (6)

Then the fuzzy entropy of a induced by D is denoted by:

H(a) = −
1

log2t

t∑
i=1

(
Eilog2Ei + Nilog2Ni

)
. (7)

here t is the number of decision partition G/D, and H(a) in-
icates the uncertainty of a assigned by D and it is a non-
robabilistic entropy. Conversely, Ei and Ni are measured via the
uzzy membership degree of each element in a certain decision
lass. Subsequently, the fuzzy entropy of each attribute is attained
4

y summing fuzzy entropy of individual intervals in every feature
imension. In particular, H(a) = 0 if Ei = 0 or Ei = 1. Actually,
he larger the output value of the fuzzy entropy is, the smaller
he contribution value of the element to the fuzzy formal decision
ontext is. Evidently, the weight of a is given by:

(a) =
1

|M| − 1

(
1−

H(a)∑
a∈M H(a)

)
. (8)

ω(a) represents the significance degree of attribute a to D. In
act, the larger the ω(a) is, the stronger the significance ability of
is. Obviously, it is apparent that 0 ≤ ω(a) ≤ 1

|M|−1 .
For an arbitrary a ∈ M , the weight vector of attribute is

denoted as W = (ω(a1), ω(a2), . . . , ω(am)), where ω(ai) ∈ W is
escribed as a weight vector of each attribute in M via the fuzzy
nformation entropy and

∑
ai∈M

ω(ai) = 1.

efinition 3. Let (G,M, R̃,D, J) be a fuzzy formal decision con-
text. W is a weight vector of attributes in M . For X ⊆ G and B̃ ∈
F(M), if F (X) = B̃ and Q (B̃) = X , then the pair hω = (X, B̃, ω) is
called a weighted fuzzy concept. Practically, X and B̃ are referred
to as the extent and intent of hω , respectively. ω is said to be the
weight value of multi-attribute intent B̃ and is given by:

ω =
1
|M|

∑
ai∈M

B̃(ai)ω(ai). (9)

here B̃ =
(
B̃(a1), B̃(a2), . . . , B̃(am)

)
for all ai ∈ M and m is the

umber of attributes. In fact, it also measures the degree of im-
ortance with respect to extent X from the average information
eight. Therefore, it provides the average weight of each fuzzy
oncept to determine their degree of importance.

For two weighted fuzzy concepts (X1, B̃1, ω1) and (X2, B̃2, ω2),
he hierarchy order relation is described by the subconcept–
uperconcept relation:

X1, B̃1, ω1) ≤ (X2, B̃2, ω2)⇔ X1 ⊆ X2 ⇔ B̃2 ≤ B̃1
(
or ω2 ≤ ω1

)
.

(10)

oreover, the set of all weighted fuzzy concepts forms a weighted
uzzy concept lattice (or abbreviated as WFCL) with respect to
‘≤’’, which is represented as Lω(G,M, R̃,D, J). For convenience,
e rewrite F ({x}) as F (x) for short when no confusion exists.
oreover, the pair

(
Q

(
F (x)

)
, F (x), ω

)
is referred to as a weighted

uzzy granular concept.

roposition 1. Let (G,M, R̃,D, J) be a fuzzy formal decision context.
is a weight vector of attributes in M. For an arbitrary X1 ⊆ G, then

Q
(
F (X1)

)
, F (X1), ω1

)
is a weighted fuzzy concept.

roof. It is straightforward from Definition 3. □

Therefore, the effectiveness of such a weighting approach can
e illustrated with the assistance of the following example.

xample 2 (Continued with Example 1). To understand the cal-
ulation process of weighted fuzzy concepts, for each attribute
n Table 1, the fuzzy entropies and weights of attributes are
alculated in Table 3. Furthermore, we can see that fuzzy concept-
ntents are used to compute weight values using Eq. (9) with
espect to the attributes available described in Table 4.

From Table 4, we can see that the intent of each node of
FCL is represented by some assigned weights which quantify

he corresponding importance of the node. Clearly, in reality, the
uman can focus on some certain nodes and deduce information
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Table 3
Weight of each attribute.
U H(a) ω(a)

a1 1.5343 0.3602
a2 1.9837 0.3192
a3 1.9677 0.3207

Table 4
Weighted fuzzy concepts in Table 1.
Nomenclature Weighted fuzzy concepts

WC1
(
U, (0.2, 0.5, 0.6), 0.1413

)
WC2

(
124, (0.3, 0.5, 0.6), 0.1533

)
WC3

(
134, (0.2, 0.5, 0.7), 0.1520

)
WC4

(
14, (0.3, 0.5, 0.7), 0.1640

)
WC5

(
24, (0.7, 0.5, 0.6), 0.2014

)
WC6

(
34, (0.2, 0.6, 0.8), 0.1734

)
WC7

(
4, (0.9, 0.6, 0.8), 0.2574

)
WC8

(
3, (0.2, 0.8, 0.9), 0.2053

)
WC9

(
∅, (1, 1, 1), 0.3333

)

according to their preferences and requirements. For instance,
assume that one is more interested in those information whose
weight values are greater than 0.1640. In such case, the nodes
WC1, WC2, and WC3 are not generated. In other words, we only
consider the nodesWC4,WC5,WC6,WC7,WC8 andWC9. Therefore,
WFCL can provide flexible ways for human-like problem solving
and cognitive learning. We can quickly collect the interested
knowledge and save storage space significantly.

Based on the above discussion, we now obtain the weighted
fuzzy concepts that we need. Obviously, in Example 1, we know
that learning fuzzy concept by exhaustive information granules
is completed exponentially with the dimension of objects. More-
over, considering that information granules are the basic notion
in the theory of granular computing, which plays a fundamen-
tal role in human cognition. It is natural for us to integrate
information granules into cognitive learning for decreasing the
time consumption. Therefore, granular computing (Grc for short)
should be introduced into the process of learning fuzzy concept
to decrease the amount of calculation. Next, how to construct
concept space from the given weighted fuzzy granular concept
is the key problem of cognitive learning.

3.2. Construction of weighted fuzzy concept space

In this subsection, we analyze a new classification task frame-
work of weighted fuzzy concepts based on Grc, which comprises
two aspects: initial concept space and updating concept space.

Let (G,M, R̃,D, J) be a fuzzy formal decision context, where
G/D = {D1,D2, . . . ,Dt}. W is a weight vector of attributes in
M . For any Di, the weighted fuzzy concept space Ci under Di is
denoted as follows:

Ci =
{(

Q
(
F (x)

)
, F (x), ω

)⏐⏐⏐x ∈ Di

}
. (11)

In addition, we denote by C = {C1, C2, . . . , Ct} the weighted
fuzzy concept space (for short WFCS) in which Ci is called a
weighted fuzzy subspace of C . It should be noted that each
object could be learned comprehensively for achieving classifi-
cation performance. Based on the aforementioned discussion, we
propose the procedure of constructing WFCS in Algorithm 1.

Example 3. Table 5 depicts a fuzzy formal decision context
(G,M, R̃,D, J), and nine objects are divided into two classes based
on decision attribute d, i.e. D1 = {x1, x2, x3, x4, x5} and D2 =

{x , x , x , x }.
6 7 8 9

5

Algorithm 1: Constructing weighted fuzzy concept space
(CWFCS)

Input: A fuzzy formal decision context (G,M, R̃,D, J).
Output: Weighted fuzzy concept space C .
1: Compute the decision partition G/D = {D1,D2, · · · ,Dt} and

the weight W ;
2: for each Di ∈ U/D do
3: Set Ci ← ∅;
4: for each x ∈ Di do
5: Compute the weight value ω of multi-attribute;

6: Get the weighted fuzzy concept
(
Q

(
F (x)

)
, F (x), ω

)
;

7: Ci ←
(
Q

(
F (x)

)
, F (x), ω

)
;

8: end for
9: C ← Ci ;

10: end for
11: Return C = {C1, C2, · · · , Ct}.

From Eq. (8), the weight of attribute is W = (0.5587, 0.4413).
Therefore, the weighted fuzzy concept subspace C1 generated by
class D1 is represented as follows:

C1 =
{ (
{x1, x5}, (0.08, 0.72), 0.1812

)
,(

{x2, x4, x5}, (0.11, 0.56), 0.1543
)
,(

{x1, x2, x3, x4, x5, x6}, (0.04, 0.47), 0.1149
)
,(

{x4, x5}, (0.32, 0.65), 0.2328
)
,(

{x5}, (0.55, 0.86), 0.3434
) }

.

Analogously, the weighted fuzzy concept subspace C2 induced
by class D2 is given by:

C2 =
{ (
{x6}, (0.90, 0.47), 0.3551

)
,(

{x6, x7, x8, x9}, (0.68, 0.14), 0.2208
)
,(

{x8}, (0.91, 0.36), 0.3336
)
,
(
{x6, x9}, (0.75, 0.4), 0.2978

) }
.

Evidently, the correlation analysis between two weighted fuzzy
concepts in Ci may be influenced by the noise data besides deci-
sion class Di. In such case, it is necessary to delete the weighted
fuzzy concept caused by the noise. Inspired by this issue, we
propose the concept similarity in the following discussion.

Definition 4. Let (G,M, R̃,D, J) be a fuzzy formal decision con-
text. W is a weight vector of attributes. For a weighted fuzzy
subspace Ci and threshold δ, if (X1, B̃1, ω1) is a weighted fuzzy
concept in Ci, and (X2, B̃2, ω2) is its subconcept, then the weighted
fuzzy concept similarity is represented as follows:

θ
Ci
1,2 =

|X1 ∩ X2|

|X1 ∩ X2| + 2
(
α|X1 − X2| + (1− α)|X2 − X1|

) . (12)

where α = |ω1 − ω2|, and |X1| is the cardinality with re-
spect to (X1, B̃1, ω1). In fact, since (X2, B̃2, ω2) is a subconcept of
(X1, B̃1, ω1), then |X2 − X1| = 0. Therefore, the above Eq. (12) can
be simplified as follows:

θ
Ci
1,2 =

|X1 ∩ X2|

|X1 ∩ X2| + 2α|X1 − X2|
. (13)

here θ
Ci
1,2 reflects the degree of similarity of (X1, B̃1, ω1) with

espect to (X2, B̃2, ω2). The larger the value of θ
Ci
1,2 is, the stronger

he ability of similarity is. Hence, when θ
Ci > δ, the degree of
1,2
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mportance of two weighted fuzzy concepts will be increased;
hen θ

Ci
1,2 ≤ δ, the degree of importance of two weighted fuzzy

oncepts will be decreased. Practically, the weak relationship
etween the above weighted fuzzy concepts may be caused by
he noise hidden in Ci. Hence, (X2, B̃2, ω2) should be removed
uring the learning process of weighted fuzzy concept space.

From the above statement, it can be seen that threshold δ

controls the size of weighted fuzzy concept space. And the larger
the threshold δ is, the smaller the size of weighted fuzzy concept
space is. Hence, the specific process of updating weighted fuzzy
concept space (UWFCS) is shown in Algorithm 2.
Algorithm 2: Updating weighted fuzzy concept space
UWFCS)
Input: An initial weighted fuzzy concept space C and threshold

δ.
Output: An updating weighted fuzzy concept space C δ .
1: for Ci ∈ C do
2: for each

(
Q

(
F (xl)

)
, F (xl), ωl

)
∈ Ci do

3: Set Cδ
i,l ← ∅ ;

4: if
(
Q

(
F (xj)

)
, F (xj), ωj

)
is a fuzzy subconcept of(

Q
(
F (xl)

)
, F (xl), ωl

)
in Ci then

5: Compute θ
Ci
l,j from Definition 4;

6: if θ
Ci
l,j > δ then

7: Cδ
i,l ←

(
Q

(
F (xj)

)
, F (xj), ωj

)
;

8: end if
9: end if

10: Cδ
i ←

⋃
Q
(
F (xl)

)
∈Ci

Cδ
i,l;

11: end for
12: C δ

← Cδ
i ;

13: end for
14: Return C δ

= {Cδ
1, C

δ
2, · · · , C

δ
t }.

Example 4 (Continued with Example 3). Given the threshold δ =

.59, from Definition 4, we can further compute the weighted
uzzy concept similarity based on C1 as follows:
C1
1,5 = 0.76 > 0.59, θC1

2,4 = 0.93 > 0.59,

θ
C1
2,5 = 0.57 < 0.59, θC1

3,1 = 0.79 > 0.59,

θ
C1
3,2 = 0.93 > 0.59, θC1

3,4 = 0.68 > 0.59,

θ
C1
3,5 = 0.30 < 0.59, θC1

4,5 = 0.82 > 0.59.

Then C1 is updated to Cδ
1 as follows:

Cδ
1 =

{ (
{x1, x5}, (0.08, 0.72), 0.1812

)
,(

{x2, x4, x5}, (0.11, 0.56), 0.1543
)
,(

{x4, x5}, (0.32, 0.65), 0.2328
)
,
(
{x5}, (0.55, 0.86), 0.3434

) }
.

Analogously, the weighted fuzzy concept similarity based on C2
is calculated as:

θ
C2
2,1 = 0.55 < 0.59, θC2

2,3 = 0.60 > 0.59,

θ
C2
2,4 = 0.87 > 0.59, θC2

4,1 = 0.90 > 0.59.

hen C2 is updated to Cδ
2 as follows:

δ
2 =

{ (
{x6}, (0.90, 0.47), 0.3551

)
,(

{x }, (0.91, 0.36), 0.3336
)
,
(
{x , x }, (0.75, 0.4), 0.2978

) }
.
8 6 9

6

Table 5
A fuzzy formal decision context.
G a1 a2 d

x1 0.08 0.72 1
x2 0.11 0.56 1
x3 0.04 0.47 1
x4 0.32 0.65 1
x5 0.55 0.86 1
x6 0.90 0.47 2
x7 0.68 0.14 2
x8 0.91 0.36 2
x9 0.75 0.40 2

3.3. Construction of the progressive weighted fuzzy concept space

In the previous section, we have researched how to construct
the weighted fuzzy concept space and update weighted fuzzy
concept space from operators F and Q . In fact, there is repeated
information between weighted fuzzy concepts, and they interact
with each other. To overcome individual cognitive limitations
and incomplete cognitive environments [31], we propose a new
approach to construct the progressive weighted fuzzy concept
based on the weighted fuzzy concept space.

Definition 5. Let (G,M, R̃,D, J) be a fuzzy formal decision con-
text. W is a weight vector of attributes. For a weighted fuzzy
subspace Cδ

i , if there exist weighted fuzzy concepts (X1, B̃1, ω1),
(X2, B̃2, ω2), . . . , (Xn, B̃n, ωn) satisfying X1 ⊆ X2 ⊆ · · · ⊆ Xn,
then (Xn, B̃n, ωn) is referred to as the supremum concept. And the
progressive weighted fuzzy concept is given by:

X δ
i,j = X1 ∪ X2 ∪ · · · ∪ Xn,

B̃δ
i,j =

1
2n−1 (B̃1 + B̃2 + 2B̃3 + 4B̃4 + · · · + 2n−2B̃n).

hen (X δ
i,j, B̃

δ
i,j, ω

δ
i,j) is a progressive weighted fuzzy concept, where

δ
i,j =

1
|M|

∑
ai∈M

B̃δ
i,j(ai)ω(ai).

In a general sense, the progressive weighted fuzzy concept
pace is expressed as K δ

= {Kδ
1,K

δ
2, . . . ,K

δ
t } where Kδ

i =

{Kδ
i,j|j = 1, 2, . . . , s} =

{
(X δ

i,j, B̃
δ
i,j, ω

δ
i,j)|j = 1, 2, . . . , s

}
. The s is

used to denote the number of fuzzy concept in subspace Ci. The
intent B̃δ

i,j concretely reflects the size of progressive weighted
fuzzy concept where intents of subconcept have assigned differ-
ent weights in accordance with their corresponding extents. That
is to say, the larger the extent Xi is, the larger the weight of its
relevant intent B̃i is. Accordingly, it is known that all weights
of intents is 1. At last, algorithm 3 shows how to compute the
progressive weighted fuzzy concept space K δ .

Example 5 (Continued with Example 4). From Definition 5, the
progressive weighted fuzzy concepts are shown as follows:

Kδ
1,1 =

(
{x1, x5}, (0.3150, 0.7900), 0.2623

)
;

Kδ
1,2 =

(
{x2, x4, x5}, (0.2725, 0.7575), 0.2212

)
;

Kδ
2,1 =

(
{x8}, (0.9100, 0.3600), 0.3336

)
;

Kδ
2,2 =

(
{x6, x9}, (0.8250, 0.4350), 0.3264

)
.

There are two progressive weighted fuzzy concepts under
each decision class. It can be seen that these concepts continue
to retain the original information, and remove the redundant
weighted fuzzy concepts for greatly facilitating the CCL efficiency.

4. Incremental cognitive learning based on the progressive
weighted fuzzy concept

Given a fuzzy formal decision context (G,M, R̃,D, J), the pro-
gressive weighted fuzzy concept space has a good performance
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Algorithm 3: Constructing the progressive weighted fuzzy
concept space
Input: An updating weighted fuzzy concept space

C δ
= {Cδ

1, C
δ
2, · · · , C

δ
t } and threshold δ.

utput: The progressive weighted fuzzy concept space
K δ
= {Kδ

1,K
δ
2, · · · ,K

δ
t }.

1: for Cδ
i ∈ C δ do

2: Set Pi = ∅, P̂i = ∅, and Ŝi = ∅; //Find the supremum
concept and sub-concept.

3: for
(
Q

(
F (xj)

)
, F (xj), ωj

)
∈ Cδ

i do

4: for
(
Q

(
F (xk)

)
, F (xk), ωk

)
∈ Cδ

i do
5: Set Si,j = ∅; //Find the sub-concept of(

Q
(
F (xj)

)
, F (xj), ωj

)
.

6: if
(
Q

(
F (xk)

)
, F (xk), ωk

)
is a sub-concept of(

Q
(
F (xj)

)
, F (xj), ωj

)
then

7: Pi = Pi ∪
(
Q

(
F (xj)

)
, F (xj), ωj

)
, and

Si,j = Si,j ∪
{(

Q
(
F (xk)

)
, F (xk), ωk

)}
;

8: end if
9: end for

10: end for
11: Ŝi ← Si,j;
12: for Si,m ∈ Ŝi do
13: if there exists only one concept

(
Q

(
F (xt )

)
, F (xt ), ωt

)
in

Pi such that each concept of Si,m is a sub-concept of(
Q

(
F (xt )

)
, F (xt ), ωt

)
then

14: Si,m = Si,m and P̂i ←
{(

Q
(
F (xt )

)
, F (xt ), ωt

)}
;

15: end if
16: end for
17: Calculate the progressive weighted fuzzy concept

(X δ
i,m, B̃δ

i,m, ωδ
i,m) from Definition 5;

18: Kδ
i ← (X δ

i,m, B̃δ
i,m, ωδ

i,m);
19: end for
20: Return K δ

= {Kδ
1,K

δ
2, · · · ,K

δ
t }.

on data classification. When a new object △x is added, how to
istinguish its class label is a problem that deserves exploring.
eanwhile, △x will cause the change of WFCS generated by the

original context. In this section, the incremental learning during
the construction of the progressive weighted fuzzy concept space
will be considered.

4.1. Classification label prediction after adding objects

In weighted fuzzy concept space, the similarity of object could
be described by the Euclidean distance using their attributes, or
equivalently, the shorter the distance is, the greater the similarity
between objects is. Hence, we can figure out the distance be-
tween the new object △x and weighted fuzzy concepts in K δ to
determine the class label of △x.

Definition 6. Let (G,M, R̃,D, J) be a fuzzy formal decision con-
text. W is a weight vector of attributes. For a newly added
object △x whose membership value with respect to R̃ is B̃, the
Euclidean distance between △x and the jth progressive concept
7

(X δ
i,j, B̃

δ
i,j, ω

δ
i,j) in Kδ

i is defined as:

ED(△x, X δ
i,j) =

√∑
a∈M

(
ω(a)

(
B̃(a)− B̃δ

i,j(a)
))2

. (14)

The value of ED(△x, X δ
i,j) reflects the degree of similarity of △x

ith respect to (X δ
i,j, B̃

δ
i,j, ω

δ
i,j). The smaller the ED(△x, X δ

i,j) is, the
tronger the similarity is; otherwise, the weaker the similarity
s. △x should be classified based on the principle of minimum
istance. If there exist multiple values of the minimum distance,
hen △x could be classified according to the priority principle of
ecognition.

xample 6. In a fuzzy formal decision context of Table 6, where
1 − x9 are from Example 2, x10 − x11 are two newly added
bjects. For the object x10, whose membership degree with re-
pect to R̃ is B̃ = (0.30, 0.55), and its real label is 1. Next,
he Euclidean distance between x10 and the existing progres-
ive weighted fuzzy concept space K δ is computed as follows:
D(x10, X δ

1,1) = 0.1063, ED(x10, X δ
1,2) = 0.0928, ED(x10, X δ

2,1) =
.3510, and ED(x10, X δ

2,2) = 0.2977. In fact, the distance between
10 and X δ

1,2 is minimal in K δ such that x10 should be classified
nto decision class D1 which is in accordance with the real label
.

In the following, the algorithm 4 is class label prediction when
ew objects are randomly added.

Algorithm 4: Class label prediction
Input: The progressive weighted fuzzy concept space

K δ
= {Kδ

1,K
δ
2, · · · ,K

δ
t } and the newly added object △x.

Output: The class label of △x.
1: for each Kδ

i ∈ K δ do
2: for each Kδ

i,j ∈ Kδ
i do

3: Compute ED(△x,Kδ
i,j) from Definition 6;

4: end for
5: The minimal distance is si = min

(
ED(△x,Kδ

i,j)
)
, where

Kδ
i,j ∈ Kδ

i ;
6: end for
7: Compute argmin{i=1,2,··· ,t}si in K δ;
8: Return the class label of △x.

4.2. Dynamic updating method of the progressive weighted fuzzy
concept space

Generally speaking, when a new object △x is added, its class
label prediction must be determined first from Algorithm 4. As-
sume that the class label is j, then D′j = Dj ∪ △x. To avoid re-
alculate the weighted fuzzy concepts in D′j , we study a dynamic
updating algorithm of the progressive weighted fuzzy concept
space in Algorithm 5.

Based on the fact that the class label of △x is jth class, the
central idea of the algorithm is lines 3–9. The first task is to
renew the weight vector generated from the new data, and then
compute the weight values of multi-attribute intents in Kδ

i (i ̸= j).
Next, it is obvious that Kδ

i is updated to ˆKδ
i . Assuming |G| and

|M| are the cardinalities of object and attribute sets, respectively.
C | is the cardinality of class label, and |Di| is the classification
et to decision partition. Thus, in step 3, the time complexity is(∑

|C |
i=1 |C |(|Di|

2
+ |Kδ

i |)
)
. Furthermore, the difference between

he dynamic updating algorithm and the static updating algo-
ithm is how to acquire new weighted fuzzy concept subspace
ĵ. When updating the jth weighted fuzzy concept, we are first
oncerned with the difference between △x and xj, which can
e obtained in O(|M|). Subsequently, the computation of the
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Table 6
A fuzzy formal decision context.
G a1 a2 d

x1 0.08 0.72 1
x2 0.11 0.56 1
x3 0.04 0.47 1
x4 0.32 0.65 1
x5 0.55 0.86 1
x6 0.90 0.47 2
x7 0.68 0.14 2
x8 0.91 0.36 2
x9 0.75 0.40 2

x10 0.30 0.55 1
x11 0.78 0.45 2

extent of new weighted fuzzy concept can be measured within
O
(
|M|(|G| − x∗∗j )

)
. Hence, in steps 4–9, the time complexity is

O
(∑|Dj|

j=1 |M|
(
1 + (|G| − x∗∗j )

))
. However, for the static updating

algorithm, it is essential to recalculate the new weighted fuzzy
concepts, with the complexity O

(
|M|(1 + |G|2)

)
. In a summary,

the time complexity of Algorithm 5 is O
(∑

|C |
i=1 |C |(|Di|

2
+ |Kδ

i |)+
|Dj|

j=1 |M|
(
1+ (|G| − x∗∗j )

))
.

According to the above discussion, compared with the static
updating algorithm, we see that dynamic updating method of
progressive weighted fuzzy concept space improves learning ef-
ficiency and decreases unnecessary iteration.
Algorithm 5: Dynamic updating method of progressive
weighted fuzzy concept when an object is added
Input: The weighted fuzzy concept space C = {C1, C2, · · · , Ct},

the progressive weighted fuzzy concept space
K δ
= {Kδ

1,K
δ
2, · · · ,K

δ
t }, the decision partition

G/D = {D1,D2, · · · ,Dt}, the newly added data △x, and
threshold δ.

Output: The updated progressive weighted fuzzy concept space
K̂ δ = {

ˆKδ
1,
ˆKδ
2, · · · ,

ˆKδ
t }.

1: The membership degree of △x to R̃ is B̃;
2: Distinguish the class label of △x from Algorithm 4, and

assume that the class label of △x is j;
3: Recalculate weight vector W , and update the weight value of

multi-attribute intent B̃ in Kδ
i (i ̸= j). Then the updated

progressive weighted fuzzy concept is stored in ˆKδ
i and

K̂ δ ←
ˆKδ
i ;

4: Set Ĉj ← ∅;
5: for each xj ∈ Dj do
6: if R̃(△x, a) ≥ R̃(xj, a) for each a ∈ M then
7: x∗∗j ←△x and update Ĉj ← (x∗∗j , x∗j , ωj);
8: end if
9: end for

10: Compute (△x∗∗,△x∗, ω) and update Ĉj ← (△x∗∗,△x∗, ω);
1: Calculate an updating weighted fuzzy concept space ˆCδ

j from
Algorithm 2;

12: The updated progressive weighted fuzzy concept space ˆKδ
j

based on Definition 6;
13: Return K̂ δ = {

ˆKδ
1,
ˆKδ
2, · · · ,

ˆKδ
t }.

In fact, in actual incremental learning, how to achieve the
ynamic concept learning between the newly added objects and
he original progressive weighted fuzzy concept space is the key
roblem that worths researching. For an increased data with-
ut label, we need to judge its label first, and then replace
he weighted fuzzy concept space for the incremental learning.
 i

8

In this process, dynamic updating mechanism with respect to
concept learning makes the best of information granules of the
newly added objects, which facilitates uncertain classification
and thereby improves efficiency greatly. Next, dynamic updating
mechanism of progressive weighted fuzzy concept with multiple
objects is shown in Algorithm 6.
Algorithm 6: Dynamic updating mechanism of progressive
weighted fuzzy concept when multiple objects are added
(DMPWFC)
Input: The weighted fuzzy concept space C = {C1, C2, · · · , Ct},

the progressive weighted fuzzy concept space
K δ
= {Kδ

1,K
δ
2, · · · ,K

δ
t }, the decision partition

G/D = {D1,D2, · · · ,Dt}, the newly added data block
X = {X1, X2, · · · , Xk}, and threshold δ.

Output: The updated progressive weighted fuzzy concept space
K̂ δ = {

ˆKδ
1,
ˆKδ
2, · · · ,

ˆKδ
t } and the class label of added objects.

1: for Xi ∈ X do
2: for xj ∈ Xi do
3: Distinguish the class label li,j of xj from Algorithm 4 and

command L(i, j) = li,j;
4: The updated progressive weighted fuzzy concept space

K̂ δ = {
ˆKδ
1,
ˆKδ
2, · · · ,

ˆKδ
t } from Algorithm 5;

5: end for
6: end for
7: Return the class label of X and K̂ δ .

In addition, Fig. 3 shows the incremental learning mechanism
of progressive weighted fuzzy concept when objects are added.
As Fig. 3 illustrates, given a fuzzy formal decision context with
three classes based on decision attribute set, it will generate
corresponding weighted fuzzy concept subspaces and classical
decision concept space. Subsequently, to promote the concept
classification, the updated weighted fuzzy concept space is de-
fined according to Definition 4. At present, it is also noted that
each weighted fuzzy concept subspace has a unique class label.
Then the progressive weighted fuzzy concept is constructed to
remove repeated information based on human cognitive process.
For several waiting predicted objects, we need to identify their
class labels from the learned progressive weighted fuzzy concept
space. Hence, this incremental learning mechanism improves the
classification performance owing to the diversified learning of
new information.

5. Experimental evaluation

In this section, we will implement a series of experimental
analysis to verify the feasibility and superiority of our proposed
algorithm DMPWFC. We compare it with two kinds of algo-
rithms, that is, one is FCA-based algorithm and the other is
non-FCA-based algorithm. Specifically, the former includes the
latest progressive fuzzy three-way concept in object classification
tasks, so we compare DMPWFC and ILMPFTC [13]. In addition,
the latter also includes some incremental methods with the Naive
Bayes (INB) [34], Decision Tree (DT) [35], Nearest Neighbour Clas-
sifiers (KNN) [36] with k = 3, and Random Forest (RF) [37]. We
also compare the classification accuracy of incremental learning
mechanism between DMPWFC and ILMPFTC, and the superiority
of classification mechanism between DMPWFC and the other four
algorithms. Furthermore, the setting of different parameters in
the experiment is discussed. For the sake of fairness, the above
experiments are completed in MATLAB 2015b on a personal com-
puter with Intel(R) Core(TM) i7-4790 CPU @ 3.6 GHz and 16 GB
memory.

For DMPWFC, the threshold δ is a variable parameter which

nfluences the classification accuracy from Definition 4. Hence,
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Fig. 3. The dynamic updating mechanism of DMPWFC.
Table 7
Data description.
ID Datasets Samples Attributes Class

1 Wpbc 198 33 2
2 SonarEW 208 60 2
3 Thyroid 215 5 3
4 HeartEW 270 13 2
5 Derm 366 34 6
6 Australian 690 14 2
7 Wifi_localization 2000 7 4
8 Spam 4601 57 2
9 German 1000 21 2
10 Sat 4435 36 6

the δ is set to a value between 0.3 and 0.8 with step 0.025. With
respect to each dataset, 90% of the data is used to train the model,
and the remaining 10% is separated into 8 portions and added
to the test set to evaluate the classification accuracy between
DMPWFC and ILMPFTC.

For the other four compared algorithms, the performances on
these datasets are employed by 10-fold cross-validation. Each
dataset is randomly separated into 10 parts, nine of them is used
to train the model, and the other one is for testing. After ten
cycles, the average performance and standard deviation of ten
cycles are considered as the final evaluation indices.

5.1. Collection of datasets

In the experiment, ten datasets downloaded from UCI Machine
Learning Repository [38] are depicted in Table 7. In the procedure
of data pretreatment, value of all attributes are first normalized
to obtain the membership degree into [0.1, 0.9], and the formula
is given as follows:

R̃(xi, aj) = 0.8
f (xi, aj)−min

(
f (aj)

)
max

(
f (aj)

)
−min

(
f (aj)

) + 0.1 (15)

where f (xi, aj) is the membership value of xi with respect to at-
tribute aj, and max

(
f (aj)

)
and min

(
f (aj)

)
are respectively denoted

as the maximum and minimum of all objects in aj. In Eq. (7), H(a)
is a formula with logarithmic function, in order to avoid such a
situation log20, then it is normalized to [0.1, 0.9]. In fact, R̃(xi, aj)
is the membership degree (xi, aj) to fuzzy relation R̃, that is, the
larger the value of f (x , a ) is, the greater the degree of R̃(x , a ) is.
i j i j

9

5.2. Results and analysis

The results of the optimal δ and classification accuracies of
incremental learning mechanism under DMPWFC and ILMPFTC
in the ten datasets are presented in Table 8, where the under-
lined boldface underlines the best accuracy performance over
the other algorithm ILMPFTC. Apparently, we can demonstrate
that the average accuracies of DMPWFC with respect to each
dataset are better than those of ILMPFTC except for dataset Derm
and Sat. Furthermore, the standard deviation of datasets Wpbc,
SonarEW, Thyroid, Wifi_localization, Spam, and Sat under DMP-
WFC is less than those of ILMPFTC. From Fig. 3, under the optimal
δ, as the adding objects increase, the classification accuracies
of DMPWFC first increase and then decrease, and are higher
than those of ILMPFTC (Wpbc, SonarEW, HeartEW, Australian,
Wifi_localization, and German). In addition, the statistical perfor-
mance comparison is shown in Table 9. The underlined boldface
indicates the best average classification accuracy of DMPWFC in
the ten datasets. When Comparing the statistical evaluation, we
see that the critical value employed by Wilcoxon test is 0.05 and
the test P-value is 0.0273 < 0.05. Hence, the null hypothesis is
rejected and we accept the alternative hypothesis that there is
a significant difference under two algorithms. In summary, the
classification performance of DMPWFC is evidently better than
that of ILMPFTC.

Hereafter, the comparative results of non-FCA-based algo-
rithms are presented in Table 10. The underlined boldface data
sets indicate the best classification accuracy in the corresponding
dataset. Concretely, of the total ten cases, DMPWFC gets the
maximum accuracy in six cases, and INB and KNN achieve the
maximum accuracy in one case and three cases, respectively.
Furthermore, from Table 11, the average accuracy of DMPWFC is
higher than the other four algorithms, and its standard deviation
is less than those of algorithms DT, KNN, INB, and RF. In particular,
we can see that as the objects increase, the classification accura-
cies increase first and then decrease to some extent from Fig. 4.
Therefore, it should be pointed out that the more data are added,
the classification accuracies will not necessarily be improved.

Additionally, the statistical significance of the five classifica-
tion algorithms can be compared by the Friedman test [39] and
Bonferroni–Dunn test [40]. With respect to Friedman test, a Fisher
distribution FF measured the performance of different algorithms
is denoted as follows:

FF =
(N − 1)χ2

F
2 ∼ F

(
k− 1, k− 1(N − 1)

)
(16)
N(k− 1)− χF
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Table 8
The optimal δ and accuracy(%) comparison between DMPWFC and ILMPFTC.
ID Model δ t1 t2 t3 t4 t5 t6 t7 t8 Average±std

1 DMPWFC 0.8000 100.00 100.00 95.24 96.43 97.14 95.24 87.76 76.79 93.57 ± 7.7875
ILMPFTC 0.5000 85.71 64.29 61.90 67.86 62.86 61.90 65.31 62.50 66.54 ± 8.0065

2 DMPWFC 0.8000 85.71 92.86 95.24 96.43 80.00 78.57 67.35 58.93 81.89 ± 13.5105
ILMPFTC 0.3000 85.71 50.00 33.33 46.43 48.57 54.76 46.94 48.21 51.75 ± 15.0180

3 DMPWFC 0.8000 100.00 100.00 100.00 100.00 100.00 100.00 95.92 92.86 98.60 ± 2.7227
ILMPFTC 0.7500 100.00 100.00 100.00 100.00 100.00 100.00 95.92 92.86 98.60 ± 2.7227

4 DMPWFC 0.6000 88.89 88.89 88.89 91.67 88.89 85.19 80.95 81.94 86.91 ± 3.8083
ILMPFTC 0.4250 77.78 77.78 70.37 77.78 80.00 77.78 76.19 76.39 76.76 ± 2.8272

5 DMPWFC 0.8000 100.00 100.00 94.87 86.54 89.23 91.03 91.21 92.31 93.15 ± 4.8525
ILMPFTC 0.6250 100.00 100.00 100.00 94.23 95.38 96.15 93.41 94.23 96.68 ± 2.8719

6 DMPWFC 0.7250 88.00 90.00 90.67 90.00 88.00 86.00 83.43 79.00 86.89 ± 3.9841
ILMPFTC 0.3000 72.00 78.00 81.33 78.00 75.20 72.67 72.57 72.00 75.22 ± 3.5265

7 DMPWFC 0.7500 62.50 76.56 84.38 88.28 86.25 73.44 70.98 73.83 77.03 ± 8.7556
ILMPFTC 0.4250 53.13 73.44 82.29 86.72 82.50 72.40 65.63 59.38 71.93 ± 11.9001

8 DMPWFC 0.6250 100.00 97.30 96.85 95.95 95.95 96.17 96.72 97.13 97.01 ± 1.3148
ILMPFTC 0.3000 95.95 95.95 97.30 96.96 94.05 91.44 91.51 89.36 94.06 ± 2.9643

9 DMPWFC 0.8000 89.19 91.89 93.69 91.89 90.27 86.49 79.54 72.64 86.95 ± 7.2720
ILMPFTC 0.5500 70.27 78.38 81.08 81.76 82.16 80.18 76.06 69.26 77.39 ± 5.1101

10 DMPWFC 0.5750 93.33 89.09 75.96 73.64 70.18 68.18 67.27 67.12 75.60 ± 10.1843
ILMPFTC 0.3000 98.79 96.97 92.32 76.06 67.52 64.85 62.86 61.67 77.63 ± 15.9394
Table 9
The results of average accuracy and Wilcoxon test between DMPWFC and ILMPFTC.
Algorithm ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 Average P-value

DMPWFC 93.57 81.89 98.60 86.91 93.15 86.89 77.03 97.01 86.95 75.60 87.76 –
ILMPFTC 66.54 51.75 98.60 76.76 96.68 75.22 71.93 94.06 77.39 77.63 78.66 0.0273
Fig. 4. Accuracy(%) comparison between DMPWFC and ILMPFTC.
where χ2
F =

12N
k(k+1)

(∑k
i=1 R

2
i −

k(k+1)2
4

)
. N is the cardinality of

datasets, k is the number of different algorithms, and Ri is the
verage sort of algorithm Ri about all datasets. At first, the initial

hypothesis is that the accuracy performance of all algorithms is
considered to be the same. If FF > F

(
k − 1, k − 1(N − 1)

)
, then

he initial hypothesis will be rejected. In fact, FF = 3.4654 and the
ritical value of F (4, 36) = 2.11 at level α = 0.1. Hence, the initial
ypothesis is rejected and we accept the alternative assumption
hat the classification performance of five models is remarkably
ifferent.
10
Furthermore, the classification performance of five models
is further employed by Bonferroni–Dunn test. Suppose that the
mean rank of between two models exceeds the critical value

CDα = qα

√
k(k+ 1)

6N
and then the classification performance of the above two models
is evidently different, in which qα is denoted as the critical value
in the test. The rank result of five models is shown in Table 12.

At level α = 0.1, we notice that the critical value q0.1 = 2.241
in [40], afterwards, CD = 1.58 (k = 5 and N = 10). Therefore,
α
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Table 10
The comparison of accuracy(%) performance about five algorithms.
ID Model t1 t2 t3 t4 t5 t6 t7 t8 Average±std

1 DMPWFC 100.00 100.00 95.24 96.43 97.14 95.24 87.76 76.79 93.57 ± 7.7875
DT 65.00 60.00 63.33 65.00 66.00 64.17 65.71 66.25 64.43 ± 2.0345
KNN 65.00 70.00 71.67 71.25 72.00 70.83 72.14 70.00 70.36 ± 2.3170
INB 80.00 82.50 76.67 75.00 77.00 75.83 76.43 79.38 77.85 ± 2.5327
RF 80.00 77.50 71.67 73.75 72.00 72.50 75.71 74.38 74.69 ± 2.9105

2 DMPWFC 85.71 92.86 95.24 96.43 80.00 78.57 67.35 58.93 81.89 ± 13.5105
DT 60.00 67.50 71.67 71.25 72.00 72.50 75.00 74.38 70.54 ± 4.8208
KNN 60.00 67.50 71.67 76.25 79.00 80.83 81.43 81.25 74.74 ± 7.7810
INB 55.00 60.00 66.67 70.00 70.00 70.83 69.29 71.25 66.63 ± 5.9521
RF 75.00 77.50 86.67 77.50 82.00 79.17 70.71 70.00 77.32 ± 5.5464

3 DMPWFC 100.00 100.00 100.00 100.00 100.00 100.00 95.92 92.86 98.60 ± 2.7227
DT 85.00 90.00 90.00 90.00 92.00 91.67 91.43 92.50 90.32 ± 2.3672
KNN 95.00 97.50 98.33 97.50 97.00 97.50 97.86 96.25 97.12 ± 1.0498
INB 100.00 100.00 100.00 100.00 99.00 99.17 99.29 98.75 99.53 ± 0.5297
RF 95.00 92.50 96.67 98.75 96.00 98.33 97.14 94.38 96.10 ± 2.0899

4 DMPWFC 88.89 88.89 88.89 91.67 88.89 85.19 80.95 81.94 86.91 ± 3.8083
DT 76.67 80.00 76.67 80.83 82.00 80.56 79.52 79.17 79.43 ± 1.9092
KNN 73.33 80.00 78.89 79.17 80.00 78.89 79.52 77.92 78.46 ± 2.1817
INB 73.33 78.33 76.67 80.83 82.00 81.67 81.43 81.67 79.49 ± 3.1294
RF 80.00 68.33 71.11 75.00 72.67 76.11 75.71 72.50 73.93 ± 3.5625

5 DMPWFC 100.00 100.00 94.87 86.54 89.23 91.03 91.21 92.31 93.15 ± 4.8525
DT 92.50 88.75 90.00 91.88 93.00 93.75 94.29 93.13 92.16 ± 1.8964
KNN 100.00 97.50 97.50 98.13 98.00 98.33 97.86 97.81 98.14 ± 0.8039
INB 95.00 92.50 94.17 94.38 95.00 95.42 95.36 95.31 94.64 ± 0.9785
RF 90.00 88.75 88.33 86.25 89.00 89.58 93.57 89.06 89.32 ± 2.0528

6 DMPWFC 88.00 90.00 90.67 90.00 88.00 86.00 83.43 79.00 86.89 ± 3.9841
DT 86.25 85.63 82.92 82.81 83.25 83.75 83.39 83.59 83.95 ± 1.2775
KNN 87.50 86.88 85.00 85.00 84.50 83.96 83.93 83.59 85.04 ± 1.4248
INB 88.75 86.25 85.42 85.00 85.50 84.79 85.36 86.09 85.89 ± 1.2541
RF 81.25 83.75 78.33 82.81 83.75 79.79 78.04 79.84 80.95 ± 2.3035

7 DMPWFC 62.50 76.56 84.38 88.28 86.25 73.44 70.98 73.83 77.03 ± 8.7556
DT 96.00 96.80 96.27 96.40 95.84 95.93 96.34 96.70 96.28 ± 0.3500
KNN 100.00 99.40 98.53 98.50 98.40 98.33 98.46 98.50 98.77 ± 0.6020
INB 99.20 99.40 98.53 97.70 97.44 97.53 97.77 97.95 98.19 ± 0.7624
RF 99.60 99.40 98.80 98.00 97.20 95.73 96.06 96.10 97.61 ± 1.5636

8 DMPWFC 100.00 97.30 96.85 95.95 95.95 96.17 96.72 97.13 97.01 ± 1.3148
DT 90.53 90.96 90.47 91.10 91.68 91.98 92.43 91.86 91.38 ± 0.7186
KNN 85.96 88.77 87.31 87.76 89.12 89.68 90.50 90.42 88.69 ± 1.5867
INB 87.19 89.39 88.01 89.30 90.56 91.08 91.93 92.19 89.96 ± 1.8010
RF 92.63 93.95 94.50 92.50 91.61 90.09 91.50 89.30 92.01 ± 1.7751

9 DMPWFC 89.19 91.89 93.69 91.89 90.27 86.49 79.54 72.64 86.95 ± 7.2720
DT 70.83 65.00 68.06 68.13 66.83 67.50 67.62 67.08 67.63 ± 1.6281
KNN 78.33 75.00 74.44 72.92 73.00 71.67 72.02 71.88 73.66 ± 2.2385
INB 76.67 74.58 74.17 74.17 73.83 73.06 73.57 73.33 74.17 ± 1.1224
RF 76.67 76.25 72.25 75.83 72.33 72.08 72.14 69.17 73.37 ± 2.6156

10 DMPWFC 93.33 89.09 75.96 73.64 70.18 68.18 67.27 67.12 75.60 ± 10.1843
DT 83.82 86.55 85.09 83.14 82.58 83.06 83.48 82.73 83.81 ± 1.3590
KNN 91.82 93.18 91.82 89.77 89.64 89.94 90.44 90.61 90.90 ± 1.2522
INB 87.45 89.00 87.64 84.41 84.47 84.03 84.86 85.64 85.94 ± 1.8495
RF 88.36 88.58 82.58 80.59 81.09 80.67 81.45 80.61 83.33 ± 2.4795
Table 11
The results of average accuracy and Wilcoxon test under five algorithms.
Algorithm ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 Average±std

DMPWFC 93.57 81.89 98.60 86.91 93.15 86.89 77.03 97.01 86.95 75.60 87.76 ± 7.9265
DT 64.43 70.54 90.32 79.43 92.16 83.95 96.28 91.38 67.63 83.81 81.99 ± 11.1789
KNN 70.36 74.74 97.12 78.46 98.14 85.04 98.77 88.69 73.66 90.90 85.59 ± 10.7750
INB 77.85 66.63 99.53 79.49 94.64 85.89 98.19 89.96 74.17 85.94 85.23 ± 10.7489
RF 74.69 77.32 96.10 73.93 89.32 80.95 97.61 92.01 73.37 83.33 84.01 ± 9.3082
we can see that algorithm DMPWFC outperforms algorithms DT

and RF at level α = 0.1. Nevertheless, there is no obvious

vidence to demonstrate the statistical difference with algorithms

NN and INB (see Fig. 5).
11
6. Conclusion

With the rapid development of data, how to identify the
dynamic classification learning is a crucial issue. Moreover, some
classical CCL methods based on a fuzzy formal decision con-
text mainly focus on the same weights of attributes before con-
structing the fuzzy concepts, ignoring the internal knowledge
of attributes and decisions in advance. In this paper, we have
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Table 12
Rank of classification algorithms.
ID DMPWFC DT KNN INB RF

1 1 5 4 2 3
2 1 4 3 5 2
3 2 5 3 1 4
4 1 3 4 2 5
5 3 4 1 2 5
6 1 4 3 2 5
7 5 4 1 2 3
8 1 3 5 4 2
9 1 5 3 2 4
10 5 3 1 2 4

Average 2.10 4.00 2.80 2.40 3.70
Fig. 5. Accuracy(%) comparison of five algorithms.
roposed a new model, named DMPWFC, to recognize different
lass labels under dynamic environments. Concretely, by denoting
eight values of fuzzy concept, we first investigate weighted

uzzy concept space. Then certain algorithms of CCL are dis-
ussed to update the weighted fuzzy concepts and construct
he progressive weighted fuzzy concepts for achieving concept
lassification based on human cognitive process. Furthermore, an
ncremental CCL approach for determining classification label and
pdating fuzzy concepts is researched in the sense of preserving
nformation. At last, to better comprehend our approach, a series
f comparative experiments on ten UCI datasets are performed
o demonstrate that DMPWFC can achieve better classification
erformance.
This paper only studies the incremental CCL algorithm under

he prerequisite of adding objects without bringing out attribute
ncrements. In addition, the proposed DMPWFC algorithm cannot
irectly deal with numerical data when achieving incremental
earning. Our future research will consider these issues, so as
o improve the accuracies and efficiency of incremental learning
pproaches with respect to CCL.
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